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The three-dimensional time-dependent turbulent flow in the stably stratified Ekman 
layer over a smooth surface is computed numerically by directly solving the 
Navier-Stokes equations, using the Boussinesq approximation to account for 
buoyancy effects. All relevant scales of motion are included in the simulation so that 
no turbulence model is needed. The Ekman layer is an idealization of the Earth’s 
boundary layer and provides information concerning atmospheric turbulence models. 
We find that, when non-dimensionalized according to Nieuwstadt’s local scaling 
scheme, some of the simulation data agree very well with atmospheric measurements. 
The results also suggest that Brost & Wyngaard’s ‘constant Froude number’ and 
Hunt’s ‘shearing length’ stable layer models for the dissipation rate of turbulent 
kinetic energy are both valid, when Reynolds number effects are accounted for. 
Simple gradient closures for the temperature variance and heat flux demonstrate the 
same variation with Richardson number as in Mason & Derbyshire’s large-eddy 
simulation (LES) study, implying both that the models are relatively insensitive to 
Reynolds number and that local scaling should work well when applied to the stable 
atmospheric layer. In  general we find good agreement between the direct numerical 
simulation (DNS) results reported here and Mason & Derbyshire’s LES results. 

1. Introduction 
Ekman (1905) was the first to analyse the effect of system rotation on the 

boundary layer that came to bear his name. Although he considered only the shear- 
driven layer, Ekman’s analysis also applies to flow driven by a mean pressure 
gradient. The stably stratified turbulent pressure-driven Ekman layer - an ideali- 
zation of the Earth’s nocturnal boundary layer - is the focus of the present study. 
This paper is an extension of the analysis of the unstratified Ekman layer described 
in Coleman, Ferziger & Spalart (1990a, hereinafter referred to as CFSa). 

Buoyancy can dramatically alter the structure of a turbulent flow, including that 
within the atmosphere adjacent to the Earth’s surface, the planetary boundary layer 
(PBL). When this turbulence is vigorously heated from below or cooled from above, 
the large-scale motions that result greatly increase the rate of transport relative to 
that found in the neutrally stratified layer with the same free-stream wind speed. The 
patterns formed by the buoyancy-induced motions are often quite coherent. They 
can range from ‘ BBnard cells ’ to ‘longitudinal rolls’. The former are present when the 
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buoyant forcing is much more important than the forcing due to shear, and the latter 
when the two effects are comparable (LeMone 1973; Schmidt & Schumann 1989; 
Coleman, Ferziger & Spalart 1990b, hereinafter referred to as CFSb). Both are 
associated with striking cloud formations : ‘ convection rings ’ and cloud streets ’, 
respectively. 

For the stably stratified (which we shall term the ‘stable’) layer considered here, 
buoyancy leads to important, although more subtle, modifications of the flow. By 
diminishing the vertical velocity fluctuations, a buoyantly stable temperature profile 
reduces the ability of the turbulence to transport momentum, heat and contaminants 
vertically, and may lead to the total collapse of the turbulent state (Turner 1973). 
Between the extremes of the fully turbulent and relaminarized states, the stable PBL 
can exhibit a number of phenomena. These include enhanced anisotropy and 
intermittency of the turbulence and the creation of internal (buoyancy) waves (with 
possible nonlinearity and breaking). When the terrain is complicated, buoyant 
stability can cause both large-scale internal ‘ mountain ’ waves and ‘ drainage ’ flows ; 
very small changes in the slope of the terrain can profoundly influence the layer 
(Brost & Wyngaard 1978). In addition, stable stratification is generally associated 
with transient behaviour, so history effects are often important. 

All of these effects must be correctly accounted for by parameterizations of the 
stably stratified PBL, which are used in climate and weather predictions, dispersion 
studies, and civil engineering design projects. In this paper we restrict our attention 
to a simple model of the stable PBL: the stably stratified turbulent Ekman layer. 
That is, we examine the turbulent flow of a viscous fluid over a cooled smooth flat 
surface, driven by a uniform horizontal pressure gradient while experiencing steady 
system rotation about a vertical axis in a vertically oriented gravitational field. 
Consequently, the effects of moisture, radiation and terrain (and latitude - see CFSa) 
are neglected so that we can concentrate on the interaction of the turbulence with the 
stratification. The resulting insight can then be used to evaluate, and hopefully 
improve upon, stable-layer parameterizations. 

To achieve this goal, we shall rely upon numerical simulations of the unsteady 
three-dimensional details of the turbulence. We choose to employ the technique of 
direct numerical simulation (DNS) and resolve all of the relevant scales of motion, 
so that no subgrid-scale model is required. Unlike large-eddy simulation (LES), DNS 
produces results that are free from modelling errors. These errors are especially 
important near the surface. Owing to computer limitations, however, we are 
restricted to very low, meteorologically unrealistic, Reynolds numbers that are of the 
order of lo2. Since atmospheric Reynolds numbers can be as large as lo8 (Wyngaard 
1992), generalization of our findings to the PBL must be made with care. The focus 
will be upon Reynolds-number-independent behaviour insofar as possible. 

DNS investigations of stably stratified turbulence have also been performed by 
Riley, Metcalfe & Weissman (1981), Gerz, Schumann & Elghobashi (1989) and Holt, 
Koseff & Ferziger (1992), all for the case of homogeneous shear flow. The work most 
closely related to that presented here, however, is the LES study of the stable PBL 
done by Mason & Derbyshire (1990). Although there are differences in the flows 
considered (for example, different Reynolds numbers and stratification profiles), the 
results will be compared when it is useful to do so. 

The specific goals of this study are to discern the ‘structural’ differences between 
the turbulence in the neutrally and stably stratified Ekman layers (by comparing, for 
example, eddy size and shape, and vertical profiles of Reynolds-averaged statistics), 
and to evaluate some parameterizations recommended for use in stable PBLs (we 
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shall consider the Reynolds-averaged closures of Brost & Wyngaard 1978, 
Nieuwstadt 1984, Hunt, Kaimal & Gaynor 1985 and Hunt, Stretch & Bitter 1988). 
A secondary benefit (as with CFSa) will be the demonstration of the advantages and 
limitations of using DNS as an atmospheric-turbulence research tool. 

In  the next section, the governing equations and a detailed description of the flow 
are presented. A summary of the numerical method employed is given in $3. The 
parameters for each of the DNS runs are listed in $4. Sections 5 and 6 contain the 
simulation results, and 5 7 the discussion and conclusions. 

2. Problem formulation and flow description 
The equations to be solved are those that govern the flow of a thermally stratified 

viscous fluid, driven by a uniform pressure gradient and experiencing steady system 
rotation. The Boussinesq approximation is used to account for the buoyancy of the 
fluid; that is, density variations are assumed to have no dynamic influence other 
than to provide a temperature-dependent body force. The equation set is thus 

au 1 -+u.VU = - - V p + 2 5 1 ~  (G-u)-@g+VV2U, 
at P a  

v - u  = 0, ( 2 )  

(3) 

Here, 51 is the vertically oriented angular velocity of the system, and G is the 
(horizontal) geostrophic wind that defines, along with the acceleration due to gravity 
vector g, the imposed uniform pressure gradient via 

a# 
at 
-+v.(U@) = K v 2 @ .  

VP = - 2 ~ ~ 5 1 ~  G+p,g. (4) 

The variable p is the deviation of the pressure from the imposed field given by (4), 
u the velocity vector, p, the reference fluid density (all reference quantities are taken 
to be the value of the quantity observed as the elevation z +  00)  and u and K the 
kinematic viscosity and thermal diffusivity, respectively, both of which are assumed 
to be constant. The non-dimensional temperature, @, is defined as 

@ (T-T,)/T,, (5) 

where T and T, are the local and reference temperatures. To differentiate between 
adiabatic and diabatic temperature changes-since in the PBL only the latter 
produces a net buoyant forcing - T represents not the actual, but the potential 
temperature (Holton 1979). (The hydrostatic pressure variation over the depth of the 
PBL is small, so the difference between the two is slight (Businger 1982).) 

The momentum, continuity and temperature equations are solved over the semi- 
infinite Cartesian domain above a smooth flat surface (with the x-axis directed 
vertically upward, and the x-axis parallel to G ) :  - 00 < x < a, - < y < 00, 

0 < z < 00, subject to the boundary conditions 

We choose an isothermal (rather than, say, constant heat flux or constant cooling 
rate) lower boundary condition, with the lowest temperature in the layer. In 
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FIGURE 1. Initial stable temperature profile. @ = (T-T,)/T,. 

contrast to the unstratified counterpart (cf. CFSa), a state of statistical equilibrium 
does not exist in the cooled layer, since the temperature profile (and therefore its 
slope) cannot be independent of time without a heat source within the domain. A 
type of 'quasi-equilibrium ' is possible if the turbulence adjusts very quickly to 
changes in the mean velocity and temperature profiles, but the mean flow is time 
dependent. The initial conditions and time are therefore parameters that specify the 
flow state. The others are the thermal diffusivity of the fluid, K, the reference 
temperature, T,, the surface temperature, Go, the acceleration due to gravity, g ,  as 
well as the parameters that also apply to the neutrally stratified (which we shall term 
the 'neutral') Ekman layer: the magnitude of the system rotation 52, the kinematic 
viscosity, v, and the geostrophic wind speed, G. In  CFSa, variations in latitude and 
the direction of G were found to be important ; these are excluded in the present flow, 
however, since sh is allowed no horizontal component. 

The velocity initial conditions are from one of the fully developed, statistically 
stationary, unstratified turbulent fields of CFSa. The initial temperature field varies 
only in z. (There is evidence (Hunt et al. 1988; Gerz et al. 1989) that in stably 
stratified flows the temperature history may be sensitive to initial conditions, in that 
temperature fields that contain initial fluctuations can develop smaller oscillations 
than initial fields that are disturbance free.) A common feature of boundary layers 
that are cooled from below (as opposed to heated from above) is that the maximum 
of the temperature gradient, r = d(T)/dz (i.e. the lapse rate), is found at  the surface 
(Wyngaard 1983). Within the limits imposed by this constraint, a variety of 
temperature profiles is observed. Idealizations with linear, polynomial and 
exponential variations of T(z) have been proposed (Stull 1988). In this study, we 
utilize an error-function initial temperature profile, so that r is maximum at z = 0 
and decreases monotonically with increasing elevation. The initial (potential) 
temperature profile, shown in figure 1, is thus 

where erf is the error function, ro, is the initial surface lapse rate, To is the surface 
temperature (which is held fixed) and a, is the height at which dT/dz is 1 O/O of I'o,o. 
(A single zero subscript, as on T,, is used throughout to indicate the value of a 
quantity at  the surface, while a double zero subscript, such as on rob.o, denotes a 
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surface quantity at  the beginning of a simulation.) The parameters that characterize 
the initial T distribution are thus ro,o and the lengthscale a,. When a, is small, T(z)  
typifies the early evening profile over land, just after the transition from convective 
(or neutral) to stable conditions. Large a,  is characteristic of late night and early 
morning over land, when the effect of surface cooling has propagated to higher 
elevations. The profile (7) will be imposed upon a fully developed turbulent neutral 
field, after which the mean temperature will evolve in a manner determined by the 
time-dependent (since T, is fixed) surface heat flux, Qo, and the dynamics of the 
resulting turbulence. 

From the above, we see that a relevant set of non-dimensional flow parameters 
includes a Reynolds number, 

Re = G D / u  = G / ( u f / 2 ) ;  

(f is the Coriolis parameter, here equal to 252, and D is the laminar Ekman layer 
depth, D = (2u/f)~) ; an initial surface Richardson number, 

m ) , o  = g G ,  ,D2/(T,  G 2 )  ; 

the Prandtl number, Pr = U / K ;  the non-dimensional initial thermal lengthscale 
a J D  ; and the non-dimensional time tj. This parameter set will be used to define each 
DNS . 

3. Numerical method 
The weighted-residual method described by Spalart, Moser & Rogers (1991) is used 

to compute solutions of (1)-(3). The technique utilizes basis functions that satisfy the 
continuity equation and the boundary conditions. This results in solving, instead of 
an initial-boundary-value problem, a set of coupled ordinary differential equations 
without constraints. The method is spectrally accurate (that is, the numerical error 
approaches zero faster than any power of the grid spacing as the resolution is 
increased) in all three spatial directions, and second-order accurate in time. Those 
interested in more details than are presented in the following overview are referred 
to CFSb or Spalart et al. (1991). 

Each of the dependent variables is assumed to exhibit periodic variations of finite 
wave-length in the directions parallel to the surface, and is represented by Fourier 
series in z and y .  Provided the wavelength is sufficiently larger than any large-scale 
flow feature, this allows the infinite-domain solution to be simulated on a domain of 
finite horizontal extent. Mass is exactly conserved at each point of the simulation ; 
the divergence-free nature of the velocity fields is built into the basis functions by 
defining the basis functions such that the three Fourier-transformed components of 
the velocity field satisfy ( 2 )  at each (two-dimensional) wavevector k. This leads 
naturally to solving a Galerkin weak formulation of the momentum equation (also 
known as the Leray formulation). The basis and weight functions are the same, and 
thus both satisfy the boundary conditions. 

This formulation removes the need to explicitly compute the pressure field to 
determine the velocity, and reduces the number of dependent variables by two (the 
pressure and one velocity component are eliminated). In the z-direction, the velocity 
and temperature are approximated by finite series of M, polynomials in an 
exponentially mapped vertical coordinate, [ = exp (-z/Z), where 2 is the mapping 
lengthscale. The polynomials in f consist of a family of Jacobi polynomials 
(Abramowitz & Stegun 1972) multiplied by low-order polynomials (for example 
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c(1-5)) in order to guarantee that the dependent variables satisfy the boundary 
conditions at the top and bottom of the domain. With the proper choice of 2, the use 
of the exponential mapping and Jacobi polynomials has been found to provide an 
efficient scheme for resolving turbulent boundary layers (Spalart 1988, 1989). Each 
velocity basis function contains a term that exactly represents the slowly decaying 
irrotational velocity fluctuations. This allows the vertical grid points to be clustered 
in the highly vortical region near the surface, without compromising accuracy in the 
outer flow. Since complex exponentials and Jacobi polynomials can both represent 
smooth functions to spectral accuracy, the method is also expected to very 
accurately represent solutions to the Navier-Stokes equations. (Although no formal 
proof of this has been found, very rapid convergence is found in practice (see Spalart 
et al. 1991).) 

This spatial discretization produces, for each k, three (two for velocity, one for 
temperature) sets of Mz coupled ordinary differential equations for the unknown 
Jacobi expansion coefficients, and converts the mixed initial-boundary-value 
problem to a pure initial-value problem. The orthogonality of the Jacobi polynomials 
produces matrices of narrow band-width, an attribute that reduces the cost of 
the computation. To solve the equation sets, a mixed Runge-Kutta (third- 
order)/Crank-Nicolson time-advance algorithm is employed. Because the Crank- 
Nicolson integration is second order, the algorithm is formally second order in time, 
with the higher-order Runge-Kutta accuracy apparently wasted. However, since the 
maximum allowable step size is determined by the numerical stability requirements 
of the explicit scheme (which is applied to the nonlinear, Boussinesq, and Coriolis 
terms), and the third-order Runge-Kutta method allows a larger timestep than the 
second-order version, there is an advantage to mixing methods of different order. 
This is especially true when numerical stability requires the same timestep as 
numerical accuracy. To increase the allowable timestep, the integration is performed 
in a translating Galilean reference frame moving in the s-direction at half the free- 
stream geostrophic velocity. To avoid ‘aliasing ’ numerical errors during the 
integration of the nonlinear terms, the number of collocation points (Nx,N,,Nz) is 
50% greater than the number of expansion coefficients in each of the spatial 
directions. The most expensive parts of the method are the ‘Jacobi transforms’ to 
and from polynomial space, which typically require 40% of the CPU time; 
the operation count for these transforms at each Runge-Kutta substep is 
33Mx x Mu xWx, where M,,M, andMz are the number of expansion coefficients in the 
x-, y- and z-directions. 

The accuracy of the code that uses the above method was verified by computing 
the growth rates and phase speeds of linear instabilities in the neutrally, stably and 
unstably stratified laminar Ekman layer. In all cases, excellent agreement was found 
between the reference values and those produced by the code (see CFSb). This 
agreement, along with Spalart’s (1988, 1989) previous success using the algorithm for 
non-rotating, unstratified turbulent boundary layers, provides the basis for our 
confidence in the DNS results that follow. 

A further test of numerical accuracy was made at  a referee’s request for an 
assessment of the method’s ability to conserve momentum and energy. These 
findings also apply to other simulations that use the present method, at least 
qualitatively. The method does not provide for exact conservation of global 
momentum or kinetic energy. Such conservation is sometimes achieved, through 
cancellation of local errors. As discussed by Spalart et al. (1991, p. 307) the method 
has the property of ‘semi-conservation’ of energy (Gottlieb & Orszag 1977), save for 
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a contribution due to the surface and free-stream boundary conditions (in the 
notation of Spalart et al. (1991), the ‘ U,, =I= 0 ’  contribution) that turns out to be very 
small (see below). Semi-conservation means that energy would be conserved if the 
time integration were exact. 

We found that the imbalances due to spatial discretization alone are typically 
in the global momentum and energy budgets, normalized by D and G .  In  

comparison, the largest terms in the global energy budget (the production and 
dissipation), are about in those units. These imbalances are caused by the 
boundary-condition term mentioned above, an inexact Gauss quadrature of a cross- 
term between the polynomials and the irrotational component, and round-off errors. 
When the code was run with the usual value of the timestep, we found that the time 
discretization leads to  a negligible loss of global momentum, of the order of of 
the largest term in the budget, but causes a significant drain in the turbulent kinetic 
energy equation, equivalent to from about 4 to 6% of the viscous dissipation. This 
is consistent with the characteristics (as predicted by linear theory for advection- 
dominated processes) of the Runge-Kutta third-order scheme, which we use in its 
stable region since the CFL number is kept below 1 / 3 ;  we thus expect the scheme to 
remove energy, primarily from the small turbulent scales, making the small 
contribution needed to close the budget. To explore this conjecture we re-ran a case 
with the timestep halved, with the result that the viscous dissipation approached a 
value that was about 4% larger than that produced by the run using the full 
timestep. This strongly supports the view that Rung-Kutta third-order errors 
slightly damp the small scales in what amounts to a numerical dissipation, since this 
effect ‘ communicates’ with the true, viscous, dissipation so that the total effective 
dissipation remains approximately constant. (Conversely, we expect simulations 
with schemes such as the Adams-Bashforth algorithm, which linear theory predicts 
will amplify the smallest scales, to experience an increase of the small-scale energy 
from time-integration errors.) 

In  the past the precise influence of the time-discretization was not measured since 
the local energy budgets for stationary flows were found to balance extremely well 
near the surface, and any lack of balance away from the surface was attributed 
mostly to the lack of adequate statistical sample, and to the relative coarseness of the 
vertical grid. In  retrospect, another probable contributor to the outer-layer 
imbalances is the time-discretization error, given that the largest relative differences 
between the full-timestep and half-timestep runs mentioned above occur in this 
region. In  practice, this is of little consequence : a grid-refinement study, in which we 
estimate the time-integration errors were cut several-fold, failed to produce any 
sizable change in the first- and second-order statistics (Spalart 1988). The 
interpretation of the time-integration errors as a slight numerical dissipation is not 
disturbing, in that the turbulent scales it affects are also strongly affected by spatial 
truncation errors. Those who perform turbulent simulations must always assume 
that the energy-containing scales have little sensitivity to how exactly energy is 
removed from the smallest resolved scales, whether by true viscosity (or subgrid- 
scale models or ‘ hyper-viscosities ’), or by numerical errors of the spatial or temporal 
kind. 
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4. Cases 
4.1. Physical parameters 

Two simulations, Cases SA and NSA, will be discussed in detail. They were run a t  the 
same Reynolds, Prandtl, and initial surface Richardson numbers and lengthscale 
ratio : Re = 400, Pr = 0.7, Rio, = 0.001 and a*/D = 10. The difference between these 
runs is that in Case NSA the density is unaffected by the temperature, so the 
temperature acts as a passive scalar. The value Rio,o = 0.001 is near the maxi- 
mum that allows the flow to remain turbulent a t  this Reynolds number; when 
Bio,o > 0.001, the Re = 400 layer relaminarizes when the a*/D = 10 stable 
temperature profile is superimposed upon the neutral flow (see CFSb). Results from 
three other turbulence-sustaining stably stratified runs, Cases SB, SC and SD, will 
also be presented. Cases SB and SC are identical to SA except they use smaller values 
for a J D ,  while SD is the same as SC save for a larger Rio,o. These simulations will 
be used to determine the effect of various initial stratification profiles upon the 
developed turbulent state. 

For initial conditions, the runs use a neutral, fully developed Re = 400 velocity 
field from Case A90 of CFSa (i.e. NA90 of CFSb) with temperature profiles given by 
(7).  No disturbances are added to the initial temperature field (the velocity 
fluctuations rapidly induce temperature fluctuations). We will show below that the 
resulting turbulence, after an initial transient, is in a state of local equilibrium with 
the mean field, and thus suffers no adverse effects from this initialization scheme. 

A summary of the case parameters is given in table 1. Please note that the runs 
discussed in Chapter 5 of CFSb, which are defined by the same physical parameters 
and use the same notation (except SD) shown in table 1, yielded results that are 
slightly different than the results presented in this paper. The difference is due to a 
coding error, discovered after CFSb was published, that affected the process of 
stopping and restarting the run - a process necessary since the runs require more 
CPU time than is available during a single execution. Typically 5 or 6 such stops and 
restarts are needed. The error, which occurred during the retrieval of the velocity and 
temperature field coefficients at the beginning of an execution, was that about 3% 
of the temperature coefficients were incorrectly set to zero, and therefore caused 
minor differences between the previous and present results. 

4.2. Numerical parameters 
All computations were performed with the same number of grid points, N,, N,  and N,, 
horizontal domain size, L, and L,, and vertical lengthscale, 2 (and consequently the 
same horizontal grid spacing Ax and by, and highest vertical quadrature point, zmax), 
that were used to resolve the unheated and heated Re = 400 flows presented in CFSa 
and CFSb. These values are given in table 2. 

The stable temperature profile reduces the Case SA vorticity fluctuations, and thus 
the rate of kinetic energy dissipation, throughout the layer (see $5.1). So although 
the stratification will cause a decrease of some of the (largest) lengthscales (MBtais & 
Herring 1989), the Kolmogorov scale is larger in stratified cases than in neutral ones; 
therefore the (96 x 96 x 45) grid points, which proved adequate for the neutral flow, 
also adequately resolves the stratified turbulent velocity fields. The grid spacing is 
given by Ax+ = u* Ax/v = u* Ay/v z 7 ,  and 10 (unevenly spaced) vertical grid points 
within z+ = u* z/v x 9. Simulations that in the past have used this resolution have 
correctly reproduced both the turbulent physics and statistics of corresponding 
experimental data (Spalart 1988) ; we shall see below that this is in large measure also 



Simulation of the stably strati$ed turbulent Ekman layer 685 

Case Re Pr R43.0 %ID 
SA 400 0.7 0.001 10 
NSA 400 0.7 0.001 10 
SB 400 0.7 0.001 5 
sc 400 0.7 0.001 0.75 
SD 400 0.7 0.002 0.75 

TABLE 1. Physical parameters 

Nz N, Nz LzlD L,lD ZID z,,lD AXID AyID 
96 96 45 26 26 3.3 24 0.3 0.3 

TABLE 2. Numerical parameters 

true here. Since all cases have Pr = 0.7, the grid spacing required for the velocity and 
temperature fields is similar, so the temperature variations should be accurately 
represented. (Because the pressure tends to ‘smear’ velocity fluctuations in a 
divergence-free flow, the resolution requirements are slightly more severe for the 
temperature field than for the velocity when Pr = 1. At Pr = 0.7, however, identical 
grid spacing for both fields has been found to be sufficient (Kim & Moin 1989 ; Rogers, 
Mansour & Reynolds 1989), and will be adopted here. Examination of the Case SA 
temperature spectra later proved this assumption valid.) 

Since we are using DNS rather than LES, the change from neutral to stable 
stratification does not cause an increased modelling error. In  DNS, as the 
stratification reduces the vertical size of the eddies, the smaller resolved scales 
contain more of the turbulent energy; in LES, less of the flow is resolved, making the 
computation more dependent upon the subgrid-scale model. Were we to use a 
numerical method that does not eliminate aliasing errors, the change could also 
diminish the accuracy of the DNS. 

The maximum horizontal integral scale, over the height in the regions where the 
turbulence does not collapse, was found to  be smaller than the corresponding scale 
in the unstratified flow. Therefore, the horizontal domain size L, x L, shown in table 
2 is also satisfactory for the stable runs. 

The NASA-Ames Advanced Computational Facility Cray-YMP was used to 
generate the simulations, which required about 9 CPU seconds per full timestep 
(three substeps). Case SA requires 6150 timesteps to advance from tf = 0 to tf = 6.2 ; 
the average step size was about Atf = 0.001, At+ = ui Atlv = 0.3 or GAt/D = 0.2. 

5. Results: Cases SA and NSA (a ,  = 1OD) 
We begin with Cases SA and NSA, for which a,/D = 10 so that the lapse rate of 

the temperature profile (7) is finite in the entire turbulent region of the initial field. 
The parameters for these runs do not correspond precisely to any meteorological data 
set, but are similar enough to those found in the PBL that many of the physical 
properties - especially those insensitive to  Reynolds number - of the simulated and 
actual PBL should correspond. In  particular, the parameterizations that are valid 
for the PBL should also hold for the simulated layer, and the latter can therefore be 
used as a reliable data base for testing of the parameterizations. 
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5.1. Time histories 

In  figure 2 time histories of the surface Richardson number, Ri, (or surface heat flux), 
the volume-integrated turbulent kinetic energy per unit area, 

(qz = (u; u;) is twice the turbulent kinetic energy averaged over a horizontal plane), 
the surface friction velocity, u*, and the angle between the geostrophic wind and 
surface shear stress, p, are shown. Results from both the active (SA, solid curves) and 
passive (NSA, dashed) simulations are given. The initial adjustment period of both 
flows is about tf= 0.5, during which temperature fluctuations are generated by 
stirring of the 'painted on' temperature. Taking the height of the neutral layer to be 
0.78 (CFSa) ,  where 8 = u*/f is the unstratified turbulent Ekman-layer lengthscale, 
we define an effective 'eddy turn-over ' time, t , ,  as the vertical average of q2 /e  (e  is 
the dissipation rate of kz). Initially, t ,  x 0.8/f, so the initial adjustment period is 
about 0.6te. After the initial adjustment, both the neutral and stable fields settle into 
slowly evolving states. For Case NSA, the fluctuations in figure 2 ( b d )  are purely 
statistical, whereas in figure 2 (a) the variations represent both statistical and 
transient behaviour. All the figure 2 histories for Case SA contain statistical 
fluctuations with means that slowly drift in time. The long-term changes of the 
means are due to growth of the thermal boundary layer. Note that since the histories 
extend for a time of about an inertial time period (27t/f), the simulations have been 
run for on the order of a 'day'. 

The differences between the active and passive scalar cases, which have identical 
initial temperature profiles (shown as the solid curve in figure 3a) ,  can be attributed 
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to the stabilizing effect of stratification. For example, the smaller heat flux (Ri,) in 
Case SA is due to reduction of the turbulent mixing. As heavy, colder fluid is mixed 
upward (and warm lighter fluid, downward) part of the kinetic energy of the 
turbulence is lost to potential energy. The weakened turbulence, which (as we shall 
see below) contains both smaller vertical velocity and smaller vertical lengthscales 
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FIGURE 4. Reynolds shear stress magnitude, 17/pI = ( (U’W’)~+ ( V ’ W ’ ) ~ ) ) ~ ,  for Case SA. 
Symbols as figure 3. 

- and therefore a smaller effective turbulent diffusivity (proportional to the product 
of the two) - cannot transport warm fluid to the vicinity of the surface as effectively 
as the turbulence in a passive temperature field. The stable buoyancy reduces the 
heat flux by approximately one-third to one-half. 

Despite the stabilizing influence of stratification, the turbulence in Case SA is still 
able to produce some mixing, as shown in figure 3 ( a )  by the evolution of the mean 
temperature profile over the course of the simulation (unless stated otherwise, a 
‘mean’ quantity is the result of an average over a horizontal plane). This plot also 
indicates that the surface gradient, I‘,, first increases and then decreases with time, 
as shown in figure 2 (a).  The downward heat flux also gradually increases the fraction 
of the layer that is stratified. The initial temperature distribution is given by 
a,/D = 10, so that a*/zmax = 0.4, but for most of the run only the region above 
z/zmsx = 0.5 is neutrally stratified. This is revealed by the upward migration of the 
solid symbols in figure 3 (a ) ,  which denote the elevations at which the lapse rate is 1 % 

The stratification decreases the integrated turbulent kinetic energy by on average 
about 40% and increases the shear angle j3 by approximately 5 O ,  compared to the 
neutral case (figures 2 b  and 2 d ) .  However, the shear angle remains significantly 
lower than the laminar 45” value because the layer remains turbulent. In fact, figure 
2 ( c )  shows that the magnitude of the surface stress is only slightly less than the 
unstratified value. This suggests that the buoyancy most strongly influences the 
outer part of the flow, leaving the energetic near-surface turbulence relatively 
unaffected - even though the lapse rate approaches zero as z -+ a. The difference in 
/3 is due to the decreased depth of the turbulent region, and the increased turning of 
the velocity vector in the nearly laminar outer layer (more like that of the laminar 
Ekman flow). Further evidence for this will be provided below. 

The effect of buoyancy on the mean velocity profile is presented in figure 3 ( b ) .  One 
of the most noticeable influences is the formation of a local maximum in the velocity 
magnitude in the outer layer (most obvious near z / z r n a x ~ 0 . 3 ) ,  indicating the 
presence of a weak ‘nocturnal jet ’. A nocturnal jet is often observed above the stable 
PBL (Wyngaard 1985), and can have a variety of causes, including the effects of 
terrain and the approach of a large-scale front (Stull 1988). Here, the jet is associated 
with the collapse of the turbulence in the outer part of the flow, as described by 
Blackadar (1957). Figure 4 shows that for z/z,,, >, 0.3, buoyancy significantly 
reduces the Reynolds shear stress. (Recall that the tf = 0 field is a realization of the 

of r,. 
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FIUURE 5. Profiles of r.m.s. fluctuations of (a) velody, q = ((u’u’) + (w’w’) + (w’w’))~, and 
( b )  vorticity, o = ((oioi) + ( o i w i ) +  (o:wL))p for Case SA. Symbols as figure 3. 

stationary, unstratified Case NSA flow. The (statistical) variation in time of the Case 
NSA Reynolds-stress profile is much less than the variation observed in figure 4.) 
This ‘ quenching ’ of the turbulent stress upsets a region that previously experienced 
a balance between the Reynolds stress divergence, Coriolis acceleration and 
horizontal pressure gradient. The remaining Coriolis and pressure-gradient terms 
result in an oscillation of the ‘pre-quenched’ velocity defect (u&- G about the 
unbalanced state a t  the inertial period (2n/f) (Gill 1982) ( ( u ) ~ ~  is the mean velocity 
of the unstratified initial field). That is, the instantaneous mean velocity is the vector 
sum of G and the oscillating defect. This is illustrated in figure 3 (c) which shows the 
behaviour of ( u )  - G at z/z,,, = 0.36. Because stratification does not exert a strong 
influence on the flow near the surface (as we shall soon see) where the velocity defect 
is largest, the jet in this simulation is much weaker than some observed in the 
atmosphere; wind speeds as large as twice G are common. (See for example, Thorpe 
& Guymer 1977 for analysis of the jet measured during the 1967 Wangara (Australia) 
field experiment. The direction of the inertial oscillation of the Wangara jet is 
opposite to  that seen here because f < 0.) 

Further effects of stratification are seen in the r.m.s. velocity and vorticity 
fluctuation profiles in figure 5. The curves represent the initial neutral state (the solid 
curves) and various states during Case SA. The buoyancy causes significant 
reductions of both q and o in the outer layer. Above z/zmax x 0.3, the vorticity 
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FIGURE 6. Contours of instantaneous vertical velocity on spanwise vertical ( y, %)-planes for (a )  
Case NSA (passive scalar, at tf = 0) and ( 6 )  SA (stably stratified) at tf = 3.9: -, w/G > 0;  ----, 
w/G < 0;  contour interval 0.008. Planes represent full flow domain. 

fluctuations are practically zero, suggesting that the velocity fluctuations a t  
z/z,,, 2 0.3 are irrotational, and that in contrast to the neutral flow, the turbulent 
activity is confined to the lower third of the domain. The results presented in the next 
subsection show that this is indeed the case. 

5.2. Instantaneous jields 
Contours of instantaneous vertical velocity in a spanwise vertical plane in the neutral 
and stratified flows are shown in figure 6. The intensity and lengthscales of the 
turbulence near the surface are about the same as in the neutral layer, but the upper 
two-thirds of the stratified field is nearly laminar. Even though the lapse rate 
weakens with elevation (figure 3a) ,  the outer regions of the flow are most strongly 
affected by the stratification. This is consistent with the observation that the larger 
spatial scales are more susceptible to buoyancy effects (Wyngaard 1982, p. 74). 
Therefore, there is only a range of intermediate elevations at which stratification is 
important, those where both r and the flow scale are large enough. In  Case SA, all 
the turbulence is extinguished above z/z,,, x 0.3. The turbulence that existed in the 
neutral region z 2 0.5,,,, where is approximately zero, vanishes because the 
stratification closer to the surface cuts off the upward transport of kinetic energy 
that is the source of turbulence to the upper part of the layer under neutral 
conditions (see 55.3.2). (Conceivably, the ' unsustained ' turbulence in the outer layer 
could temporarily transfer energy to the flow below.) 

Stratification also influences the horizontal structure of the turbulence. In  figure 
7, contours of instantaneous streamwise velocity fluctuations in the horizontal planes 
at z/zma, = 0.11, 0.28 and 0.45 are shown. The stratified turbulence is weaker at all 
three heights. The size of the horizontal eddies is also different. A measure of this 
difference is provided by the streamwise integral scale, given by 

(sum on i). Where the turbulence is weak or non-existent, the lengthscale exhibits 
behaviour that is perhaps analogous to that observed experimentally during the 
stratification-induced collapse of turbulent wakes (Lin & Pao 1979) (in that both here 
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(ii) 

FIGURE 7. Contours of instantaneous streamwise velocity perturbation on horizontal (z, y)-planes 
for (a )  Case NSA (passive scalar, at tf = 0) and ( b )  SA (stably stratified) at tf = 3.9. Free-stream flow 
from left to right. (i) z/z,,, = 0.45; (ii) z/z,, = 0.28; (iii), z/z,,, = 0.11; -, u'/G > 0 ;  ----, 
u'.G < 0;  contour interval is 0.015 for (ii) and (iii), 0.004 for ( i ) .  Planes represent full flow domain. 

and for the wake, stratification leads to growth of the lengthscales in planes 
perpendicular to the gravity vector), since at z/z,,, = 0.28 and 0.45 the scale for the 
stratified flow is respectively 2.1 and 2.8 times the corresponding unstratified values 
at  tf = 0. The opposite is true where the turbulence remains strong : at z/z,, = 0.1 1 
the stratified turbulence lengthscale is about 30% smaller than the neutral scale. 
Whether the buoyancy increases or diminishes the scale of the horizontal motions 
appears to be related to its ability to extinguish the turbulence. The fact that as long 
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as the turbulence remains three-dimensional (that is, all three components of 
vorticity contain significant fluctuations) the vertical and horizontal scales remain 
coupled, due to ‘ continuity-driven ’ pressure interactions, would then explain the 
reduction in the streamwise scale at  z = 0 . 1 1 ~ ~ ~ ~  in Case SA. In contrast, when the 
horizontal vorticity (w: and wk) is small, as in runs where the turbulence dies (see 
CFSb), and in the later stages of Case SA for z/z,,, 2 0.30, each fluid layer is free to 
move independently of the others. The increase in streamwise integral scale found 
in Case SA at z/z,,, = 0.28 and 0.45 could thus be the result of the collapsed 
turbulent flow transferring kinetic energy from small to large scales, which is typical 
of two-dimensional motions (such as those associated with vortex-merging in the 
mixing layer) (Kraichnan 1967). It could also be due simply to the more rapid 
destruction of small scales by viscosity, leaving only larger eddies, which decay at a 
slower rate, moving in horizontal planes in the post-turbulent flow. 

5.3. Time-averaged data 

A disadvantage of dealing with stratified turbulence is the unsteadiness of the mean 
flow, which prohibits averaging results of a single simulation over time (as was done 
for the statistically stationary neutral case presented in CFSa) to produce mean data 
profiles. Ensemble averages could be generated but the cost would be unreasonably 
high. Instead, we are, in general, forced to average only over horizontal planes. These 
average profiles are often quite rough, due to the finite sample size associated with 
a non-infinite horizontal domain, making differentiation of statistical fluctuations 
from physical effects difficult. (Examples of purely statistical fluctuations are given 
by the variations observed in figures 2b, 2 c  and 2 d  for Case NSA.) To avoid this 
difficulty, we note that the mean variation of the flow is slow, so short-term time 
averaging should give reasonable results. Unless otherwise stated, the remainder of 
the Case SA profiles discussed are the result of time averaging 120 fields, covering a 
time span of Atf = 3.0, which corresponds to about four initial eddy turn-over times 
(as computed above). This time span was chosen because it represents a compromise 
between minimization of transient and statistical errors. The beginning and end of 
the sampling period are noted by the symbols in figure 2. 

Changes in the (spatial) mean velocity profile that occur over the sampling period 
can be seen in figure 3(b). The dashed curve is the mean profile at the first time 
sample, the ‘chain dot’ curve, the last. The variations near z = 0 . 3 ~ ~ ~ ~  are 
evidence of the inertial oscillation of the nocturnal jet. Because the magnitude of the 
jet is relatively small, this phenomenon does not exert much influence on the time- 
averaged profiles. 

The mean temperatures from the first and last time samples are shown in figure 
3 (a). Because it is affected only by gradients of the mean quantities, turbulence can 
be steady while the mean temperature varies with time, provided the lapse rate at  
each elevation does not change. In the present flow, however, the gradients vary with 
time because of the isothermal lower and zero-flux upper boundary conditions, but 
the variation is slow enough that quantities derived from the slope of the time- 
averaged (@) profile (such as the gradient Richardson number defined below) should 
be meaningful. 

The small difference between the Reynolds stress in the first (tf= 0.95) and last 
(tf = 3.9) samples, presented in figure 4, indicates that the turbulence adjusts quickly 
to changes in the mean profiles that occur during the averaging interval (the near- 
surface difference is thought to be mostly statistical; see figure 2 c ) .  In  other words, 
the turbulence is in ‘ quasi-equilibrium ’. Furthermore, because during the sampling 
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Case U*/G B (deg.1 &ID L*IS hlL* h(lfllu*L*)t 
SA 0.0638 33.2 12.8 10.1 0.06 0.18 
NSA 0.0654 28.0 13.1 m 0 0 
NA90 0.0652 28.5 13.0 - - - 

TABLE 3. Time-averaged global results 

period u, oscillates about a value that is fairly constant (see figure 2c) ,  these 
Reynolds stress profiles are evidence that it is reasonable to time average the Case 
SA data, especially for the hydrodynamic variables. 

5.3.1. Global quantities 
The global time-averaged momentum balance is much less precise than in the 

unstratified flow. In place of the 2% uncertainty found in the neutral-layer study 
(CFSa), the averaged stable field is out of equilibrium by about 17%. That is, when 
the steady-state terms in the mean (horizontal) momentum equation, 

(where ( u )  = ( (u) ,  (v)) and zRs/pm = (-  (u’w’), -(w’w’))), is integrated over z, the 
difference between the ageostrophic and divergence terms in the direction 
perpendiculart to the surface shear stress is 0.17~2,. The imbalance in the parallel 
directions is 0.09~2,. These larger values are due to the smaller number of samples 
(almost six times as many samples were available in CFSa) and unsteadiness of the 
mean flow. Because a time average over the same number of fields of the (stationary) 
passive Case NSA data produces a velocity profile with an imbalance of 15 and 7 % 
in the directions respectively perpendicular and parallel to the surface stress, the 
statistical error in the global momentum balance is probably at least as important 
as that due to drift in time of the mean. The global quantities derived from the time- 
averaged SA and NSA profiles are listed in table 3 ; for comparison the unstratified 
Case NA90 values computed in CFSb (same as A90 of CFSa) are given as well. Using 
the procedure discussed in CFSa, we estimate the uncertainty to be of the order of 
1 YO for u,/G and 3% for p in Case SA. As this is the same as in Case NA90, a 
significant fraction of the error in the surface stress can be attributed to the 
numerical sources of finite box size (which is also indirectly responsible for the 
statistical error) and finite space/time resolution. 

The difference in p and the similarity of u,/G for the neutral and stratified cases 
was discussed above. The ratio of the Oboukhov length, L,, to the unstratified 
turbulent lengthscale, 6 = u* / f ,  is L,/6 = 10.1 (where L,  = -ui T,/K,g&,,, and K, is 
the von KBrmBn constant, taken to be 0.41). Since as L,  + O ,  the importance of 
stratification increases (Businger 1982), this value indicates that the stratification is 
relatively weak. Ratios as small as L,/6 = 0.01 have been observed in the nocturnal 
PBL (Nieuwstadt 1984). Although weak, this level of stratification is close to the 
maximum that can be imposed without totally quenching the turbulence at this 

t In CFS a the component of the mean momentum equation parallel to the surface stress was used 
to measure the imbalance. The vector sum of both the ‘shear-wise’ and ‘cross-shear’ components 
of the imbalance is within 2 ‘YO for all but two of the 15 turbulent runs presented in CFSa; for Cases 
A45W and A45S the vector measure is 2.8 and 3.6%, respectively. 
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Reynolds number (CFSb). Because the Reynolds number is low, the flow does not 
possess a pronounced logarithmic region (where z / 6  4 1 and z/(v/u,) 9 l) ,  and is 
not close to the Reynolds-number-independent state that can accommodate both 
L,/6 < 1 and L,/(v/u,) % 1.  A major difference therefore between the present and 
the more strongly stratified (higher Re) cases is the distance from the surface at which 
buoyancy becomes important. In Case SA only the outermost regions are directly 
affected by the stratification. 

Also included in table 3 is the height of the stable layer, h, defined as the elevation 
at which the heat flux (WIT’) is 5% of the surface flux, &, (see $5.3.3). For Case SA, 
h = 0.3Ozmax, which corresponds to h/L,  = 0.06. The non-dimensional ‘Zilitinkevich 
height ’, another stable-layer diagnostic,? is h(lfI/u,L,)i = 0.18. Under strongly 
stable conditions, i.e. as h/L, +. co, the Zilitinkevich parameter is close to 0.4 in the 
atmosphere (Garratt 1982). This is significantly larger than our result, but a number 
of theories predict a reduction in h(lfl/u&,)i (irrespective of Reynolds number) to 
values comparable to that found here as the stability weakens (see figure 15b of 
Derbyshire 1990). 

5.3.2. Richardson numbers, length- and timescales 
One of the best indicators of the importance of stratification is the local Richardson 

number. Results from the time-averaged Case SA data set are shown in figure 8 (a) .  
Only the turbulent region, z < h = 0 . 3 0 ~ ~ ~ ~  is considered. Both the ‘flux’ and 
gradient ’ Richardson numbers, defined respectively as 

and 

9 (WIT) 
Ri,, = - 

T, (u’w’)d(u)/dz + (v’w’)d(v)/dz 

g d(T)/dz 
T, (d(u)/dz)2+ (d(w)/dz)2 ’ 

RiGR = - (9) 

are presented. Physically, the Richardson numbers represent the relative importance 
of buoyancy and shear. Ri,, is the ratio of the buoyant destruction (for stable flows) 
and the shear production terms in the turbulent kinetic energy equation. Note that 
the surface Richardson number is Ri, = (RiGR), ((d(u)/dz)i+ (d(v)/dz)i)D2/G2. 

Figure 8 (a)  again shows that the importance of stratification increases with 
elevation. Although both the buoyant destruction and shear production fall to zero 
as z +. co, the latter approaches zero more rapidly. This demonstrates once more that 
the larger spatial scales are more sensitive to stable stratification. (Notice that 
because it is so weak, the shear associated with the nocturnal jet, discussed above, 
does not lead to a decrease in Richardson number in the outer layer.) There is strong 
evidence that the maximum gradient Richardson number at which turbulence can 
permanently exist in homogeneous flows at high Reynolds number is approximately 
0.25 (Gerz et al. 1989; Holt et al. 1992; cf. Fleagle & Businger 1980, p. 282). Above 

t The prediction that the equilibrium stable-layer height is proportional to (u,L,/J f 1); waa 
originally derived by Zilitinkevich (1972) based on the assumptions that h’ ot vT/ f (by analogy to 
the laminar Ekman layer) and that v, scales with u,L,. The latter follows from the observation 
that in stably stratified turbulence the ratio of buoyant destruction to shear production of 
turbulent kinetic energy (the flux Richardson number) never exceeds a certain value. The height 
expression is also the result of similarity theories that assume the flow depends only on u,, Q,,, g/T,, 
and f (Zilitinkevich 1975), and is a feature of Nieuwstadt’s (1985) equilibrium model (see also 
Derbyshire 1990). 
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FIGURE 8. Turbulent kinetic energy budget profiles for Case SA (time averaged). (a) Richardson 
number: -, RiFL; ----, RiG,,; * a * ,  Ri, = -g(w’V)/(-g(w’V)+e). (b)  Terms in steady-state 
budget, normalized by u:/S: ----, production, -(u’w‘)d(u)/dz-(v’w’)d(v)/dz; - .  ., buoyant 
destruction, g(w’V) ; ---, viscous dissipation, --E; -, imbalance, 

- [ - (u’w‘) d(u)/dz- (v’w’) d(v)/dz+g(w’V)-e]. 

(c) Imbalances, -[-(~’~‘)d(u)/dz-(v’w’)d(v)/dz+g(w‘V)-e],normalized byut/S:-, Crtse 
SA (time averaged); ----, Case NSA (passive scalar, averaged over SA sampling period). 

z = O.6h, where Ri,,> 0.25, the kinetic energy of the turbulence is supplied 
by transport from below. This is supported in figure 8 ( a )  by the profile of Ri,, 
defined as the ratio of buoyant to total (buoyant plus viscous) destruction: 
Ri, = -g(w‘O‘)/(-g(w‘@’)+e). As can be seen from the steady-state turbulent 
kinetic energy transport equation, 

if the divergence -dJ/dz of the kinetic energy flux, 

J = ;(u; U; w’) -;vdq2/dz-vd(w’w‘)/dz+ (p’w’)/p,, 

were zero (and the flow is stationary), production would balance destruction and Ri, 
would be identical to the flux Richardson number. The fact that Ri, is less than Ri,, 
implies the energy flux is a source of turbulent kinetic energy above z = 0.25h. 
Profiles of the production, buoyant destruction and viscous dissipation terms in the 
above balance are given in figure 8 ( b ) .  Also shown, as the solid curve, is the 
imbalance in the steady-state budget, which represents an estimate of the flux 
divergence (-dJ/dz was not computed and recorded during the simulation). Mostly 
because of the time-discretization error discussed in $3, which causes (€1 to be a few 
percent too small, we expect -dJ/dz be somewhat larger than the imbalance, most 
noticeably in the outer layer (the tendency for w2//at to be < 0 produces the opposite 
effect, to a lesser degree). For z > fh the actual flux divergence is probably about 10 
to 15 % larger than the imbalance. To illustrate the effect of the stratification upon 
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FIGURE 9. Profiles of (a )  timescale and ( b )  lengthscale ratios for Case SA (time averaged) : (a)  
-, Sq2/&; ----, Nq2/&. ( b )  -, Lo/v ;  ----, L, /v .  

the flux divergence, the outer-layer imbalance has been replotted in figure 8c against 
the ‘dissipation defect ’, and compared to the imbalance found in the passive scalar 
flow. (The results were plotted versus e since i t  is nearly monotonic, and accounts for 
the difference in depths of the two layers.) The profiles demonstrate that another 
important influence of the stratification is to significantly diminish the energy flux 
in the region between z = 0.25h and h. 

The turbulent Prandtl number, Pr,, is RiGR/RiFL = V.,..K,. Figure 8 ( a )  therefore 
implies that Pr, is less than one for 0 < Ri,, < 0.5. Its behaviour will be investigated 
in $5.3.4. 

I n  their recent LES study, Mason & Derbyshire (1990) computed fields with 
Richardson number profiles much different than those shown in figure 8(a) .  Their 
Richardson numbers do not increase monotonically with z, but reach a maximum of 
about 0.25 and fall to zero a t  higher elevations. Both their stratified flows and ours 
are produced by cooling an initially neutral field. The dissimilar behaviour is 
primarily due to the different ways in which the cooling is introduced, and the times 
at  which the flows are examined. Whereas Case SA imposes a temperature with 
positive r extending to finite heights (i.e. a ,  > 0), Mason & Derbyshire introduce 
buoyancy by reducing only the surface temperature (a,  = 0) and investigated the 
flow only during the period in which the outer regions remain unstratified and 
turbulent. If their simulation were continued, stable buoyancy would presumably 
diffuse upward so that, like Case SA, the higher elevations would become non- 
turbulent and Ri,, would become very large - although because their Re is larger 
(and surface layer deeper), the time required for this to happen would be greater than 
in our low-Re flow. (In the PBL, an energetic nocturnal jet could also retard the 
Ri,,+co process in the outer layer.) Mason & Derbyshire’s simulation is 
representative of the early evening stable PBL, just after transition from convective 
to stable conditions, while Case SA is typical of the late night and early morning 
state. Despite the differences between the two studies, it  is useful to compare some 
results, especially quantities that are believed to depend primarily on Richardson 
number; this is done in $5.3.5. DNS results from ‘early evening’, a ,  x 0, cases will 
be presented in $6. 

Another way to characterize the relative importance of competing mechanisms in 
turbulent flows is in terms of ratios of the length- or timescales associated with each 
mechanism. In figure 9(a)  the vertical distributions of Sq2/e and Nq2/s  are given. 
These can be interpreted as the ratios of the ‘eddy turn-over’ time (q2 /e )  to the 
timescales of the mean strain, S-l = 2 ( ( d ( u ) / d ~ ) ~  + (d(v)/dz)’))-;, and buoyancy, 
N-’ = (gr/Tm)-i. N is the Brunt-Vaisalii or ‘buoyant ’ frequency (the frequency at  
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which a slightly displaced particle in a quiescent inviscid fluid with lapse rate r 
oscillates about its equilibrium position (Turner 1973)). The ratio of the two 
timescales is N / S  = (2RiGR)4. The Sq2/e profile (the solid curve in figure 9a) is similar 
to those found in two-dimensional turbulent boundary layers; it exhibits a near- 
surface maximum of between 15 and 20 and falls to about 2.5 in the outer layer (see 
results of Kim, Moin & Moser 1987 presented in Lee, Kim & Moin 1990). This 
distribution shows that near the surface, mean shear is more important than the 
‘self-interaction ’ of the turbulence, but not so large that nonlinear interactions are 
negligible; in other words, rapid distortion theory (Townsend 1976) is not directly 
applicable. Far from the surface, where Sq2/e is 0 ( 1 ) ,  the ‘external’ and ‘self- 
induced’ strains are comparab1e.t The behaviour of Nq2/e suggests that the 
importance of buoyancy relative to self-straining increases with elevation. 

Lengthscale data for Case SA are shown in figure 9 (b). The ratios of the Ozmidov 
and the buoyancy lengthscales to the Kolmogorov scale are given. The Ozmidov 
scale, Lo = ( e / P ) p ,  represents the vertical scale at which buoyancy and inertial forces 
are equal. It is therefore the largest vertical scale of motion that can exist in a 
stratified flow (Ozmidov 1965; Turner 1973). The buoyancy scale, L,, is defined as 
a,/N (a, is the square root of the variance of the vertical velocity), and also 
represents a buoyancy-limited maximum scale. L,  is the vertical distance over which 
significant kinetic-to-potential energy conversion occurs (Wyngaard 1985). Since the 
physical concepts behind the two scales are equivalent, differences that occur in 
practice (apart from a constant of order one) are the result of using an incomplete 
model to represent the turbulence (for example, anisotropy is neglected in the 
definition of Lo).  

Because the Kolmogorov scale, 7 = (v3/e)f,  is the smallest (dissipation) scale of the 
turbulence, L,/q and L,/q define the ‘bandwidth’ available to  the turbulence at 
each elevation (Gregg 1987). The ratio (Lo/7)g = e / P  v can be interpreted as a local 
turbulent Reynolds number, Re, - if the velocity scale is n,, the lengthscale 1 is L,  
and e = nk/l (these last two expressions will be discussed below; see (10)-(13)). 
Therefore, Lo/7 = Rei. Figure 9 ( b )  implies that the range of scales available to the 
flow between z /h  = 0.6 and 1 is quite small. As we examine this flow, we must bear 
in mind that only the ‘core’ of the layer, 0.05 < z/h < 0.6, is strongly turbulent. 

Another consequence of the reduction with elevation of the range of lengthscales 
is that internal wavest are not apt to be present in the outer layer ; since L,, Lo and 
7 are of the same order, any waves that might appear are likely to be quickly damped 
by viscosity. Stillinger, Helland & Van Atta (1983) observed that internal waves 
disappeared, in their stratified grid turbulence experiments, when L0/7 fell below 
about 10, the value near z = 0.6h in Case SA. In the strongly turbulent regions of this 
flow (where the lengthscale ratios are larger) waves are also probably absent (or at 
least not significant), since the statistics for stratified and unstratified turbulence are 
very similar. The importance of buoyancy waves in non-turbulent regions is 
discussed in CFSb. 

?For high Reynolds number flows, the timescales of the largest and smallest eddies will be very 
different, i.e. oq2/e % 1. Therefore, at high Re nonlinear interactions can also be important where 
Sqz/c is large, since S / w  will not necessarily also be large. 

1 Here we consider only waves generated by turbulence; buoyancy waves that result from large- 
scale topographic features (e.g. mountains) or synoptic-scale disturbances will not appear because 
of the assumed flow conditions. 
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FIGURE 12. Ratio of Reynolds shear stress magnitude to twice turbulent kinetic energy, 
a, = ((u’w’)’+ (V‘W’>*)~/~’ : -, Case SA (time averaged) ; - - --, NSA (passive scalar, averaged over 
SA sampling period). 

time-averaged profile is constructed; the average is given by the dotted curves. The 
horizontal lines mark the height of the layer, h (defined via the 5% heat flux 
criterion, for the time-averaged data). A change of uQ in time is apparent (ue is 
normalized by @* = IQ,I/T, u*, where Qo and u* are derived from either the local (for 
the tf = 0.95 and 3.9 curves) or time-averaged temperature and velocity profiles). On 
the other hand, much of the change in (w’@’)/lQol is probably statistical, since the 
instantaneous curves both fall mostly to the same side of the time-averaged result. 
(The instantaneous profiles in figure 11 a are normalized by the instantaneous surface 
flux, Qo(t) cc ro(t), while the time-averaged distribution is divided by Qo given by r, 
for the time-averaged temperature.) The rates at which uQ and (w‘@‘) fall to zero at 
large z are quite different. While the time-averaged heat flux becomes zero at  about 
the same elevation as the vorticity (figure 5b) and Reynolds shear stress (figure 4), 
the decay of the temperature disturbances resembles that of the velocity fluctuations 
(see figure 5a).  A t  first glance, it might appear that these velocity and temperature 
perturbations are associated with internal waves. However, since r z 0 here, and 
figure 5 (a )  reveals that the velocity fluctuations at each elevation never exceed those 
found in the neutral initial condition, it is more likely that the non-zero ue is due to 
fluctuations of an effectively passive scalar, which has diffused from below. 

Contours of the instantaneous heat flux, w f W ,  in the horizontal plane a t  
z/z,,, = 0.11 are shown in figure 11 (b) .  While the positive and negative values 
occupy about the same area, the negative peaks are stronger. An example of this is 
provided in figure 11 (c) by the variation of w’@’ with y along a line of constant x. The 
average, ( w f W ) ,  is negative (as shown by figure 11 a ) ,  indicating that on the average 
the turbulence is working against the stratification, converting kinetic energy into 
potential energy (i.e. ucg). The mean potential energy is thereby increased. 

5.3.4. Hydrodynamic quantities, turbulent Prandtl number 
When normalized by the surface friction velocity, both the normal and shear 

components of the time-averaged Reynolds stresses (not shown) are only slightly 
smaller near the surface than their unstratified counterparts (cf. CFS b).  Coupled with 
the minor difference in u* for the active and passive cases shown in figure 2 ( c ) ,  this 
reinforces the notion that the near-surface regions of the two flows are similar. 

Figure 12 gives the Reynolds stress ratio, a, = ( < u ’ ~ ’ > ~ + ( v ’ w ’ ) ~ ) ~ / q ~ .  So that we 
may compare stratified and neutral results, the vertical axis in figure 12 (and the two 
to follow) have been normalized by the ‘stress height’, h,, the elevation at which the 

23 BLM 244 
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averaged) -, Reynolds stress. - -  -- ,  velocity gradient. Case SSA (passive scalar. averaged over SA 
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FIGURE 14. Eddy viscosity, vT = P s / ( 2 S ) 2 :  ~ . Case SA (time averaged) : 
.... , XSA (passive scalar. averaged over SA sampling period). 

v7’/6u* ). 

Reynolds shear stress magnitude (( U ’ / P ’ ) ~  + ( U ’ W ’ ) ~ ) ~  is 5 YO of the surface stress. (A 
heat flux height may be computed for Case M A ,  but because the temperature does 
not affect the turbulence for a passive scalar flow, h, is a better measure of the 
turbulent depth.) For Case SA, h / h ,  = 1.69, and the stress height is 0.49 times the 
Case NSA value of h,. I n  the stratified layer a1 is smaller than in the neutral layer, 
a result of the buoyancy diminishing the vertical velocity. (The fact that the 
unstratified value is also less than the usual a, x 0.16 found in two-dimensional 
boundary layers is a consequence of the system rotation; cf. figure 16 of CFSa . )  The 
Reynolds shear stress is reduced more than the turbulent kinetic energy, of which crk 
is only one component. 

A comparison of the directions of the projected Reynolds shear stress and velocity 
gradient is provided in figure 13. In  the neutral layer both the stress and gradient 
turn through wider angles than in the stable layer. We also note that the oft-made 
assumption that the Reynolds stress is aligned with the velocity gradient is of 
comparable, but not high. accuracy in both flows. The angle between the two is as 
large as 25”. 

One of the most striking differences between the stable and neutral flows is in the 
behaviour of the eddy viscosity. vT. As shown in figure 14. vT is as much as three and 
a half times larger in the unstratified case. (The normalization does not cause the 
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S = $[(d(u)/dz)2+(d(v)/dz)2]~; P ,  = -(u’w’>d(u)/dz-(v’w’)d(v)/dz. 

-,tf=O(initialcondition); - - - - , t f=0 .95 ;  ..., tf= 1.8;--- ,tf=2.9;-- .-- ,tf=3.9;-- . .-- ,  
tf= 5.0; -. . .-, tf= 6.2. 

difference, since u* and 6 are very similar for the two flows; see table 3.) The 
definition of the eddy viscosity used here is vT = P, / (2S)2 ,  where 

P , =  -( u’w’) d(u)/dz- (w’w’) d(v)/dz 

is the production rate due to shear of the turbulent kinetic energy, and 
2s = ((d(u)/dx)2+d(w)/dz)2)i is the magnitude of the mean velocity gradient. When 
the eddy viscosity is defined as GT = (((U’W’)~))+((W’W’))~)~/~S, the Case NSA-to- 
Case SA ratio is still about 3.5 to 1.  (As shown in CFSa, fiT is slightly larger than vT.) 
Since GT decreases more than the Reynolds shear stress (figure 4), the stable flow also 
has a larger mean velocity gradient. The increase can be observed in figure 15(a). 
Near z = 0 (not shown in figure 15a), the u* history (figure 2c) implies that the 
gradient decreases slightly (cf. table 3;  recall So - u”,. Nevertheless, in most of the 
layer the buoyancy leads to a larger S. This increase in velocity gradient does not, 
however, lead to a significant increase in P,. In  fact, figure 15(b) shows that near the 
surface the production rate is actually diminished. 

The stratification also noticeably affects the turbulent transport of heat. This is 
23-2 
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indirectly revealed by the variation with Ri,, of the turbulent Prandtl number 
shown in figure 16. (Recall that Ri,, ranges from 0 a t  the surface to 0.25 a t  about z 
= 0.6h.) The similarity between the behaviour in the stable and neutral cases implies 
that as the buoyancy lessens uT (figure 14), it  also reduces the turbulent conductivity 
by about the same amount. Figure 16 also shows - since Pr, E RiGK/RiFL - that the 
stratification diminishes the flux (w’@’) about as much as it does P, (cf. Gerz et al. 
1989). For both flows, Pr, falls between 0.5 and 1, the range found in experimental 
observations of (unstratified) two-dimensional boundary layers (Kays & Crawford 
1980). 

5.3.5. Re ynolds-averaged closures 
In  this section we shall use the Case SA data to test some Reynolds-averaged 

closure models. One of the most popular schemes for stably stratified layers is the 
second-order parameterization of Brost & Wyngaard (1978) (see Fitzjarrald 1979 for 
a more complete presentation of the details of the model). Their principal 
assumptions include the neglect of time variation and third-order moments in the 
transport equations for the second-order correlations, and a limit on the largest 
spatial scale caused by buoyancy. Away from the surface, the lengthscale is assumed 
proportional to L,  = a,/N. This is often referred to as the constant-Froude-number 
approximation (Wyngaard 1985). 

Nieuwstadt (1984) used the Brost-Wyngaard approach as the basis for a similarity 
theory (see also Sorbjan 1986). The cornerstone of the scheme (and Brost & 
Wyngaard’s model) is the idea that in stably stratified flows, the state of the 
turbulence depends only upon local conditions at a given elevation. When non- 
dimensionalized by the local friction velocity, u,(z) = ( ~ / p ) i ,  and local Oboukhov 
length, A ( z )  = -ut T,/K,g(w‘T’) (we assume K, = 0.41), the model equations 
contain only a single parameter and are universal in this sense. (Note that as z+O, 
u, +u* and A+L*.) The ‘similarity’ lies in the equations governing the turbulence 
profiles, not the profiles themselves, as is usually the case. Nieuwstadt chose as the 
independent parameter the normalized near-surface ‘large eddy ’ lengthscale z / A .  
Turbulence statistics are assumed to exhibit a unique dependence upon this 
parameter. Because the large-eddy scale is assumed to become independent of z far 
from the surface, locally normalized statistics should become constant at large z / A .  
This regime is referred to as ‘z-less’ stratification (Wyngaard 1973). 
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viscosity, -, fiT = 17/p1/2S; ---, vT = P s / ( 2 S ) 2 .  

Some of the time-averaged Case SA data are plotted using the local scaling in figure 
17. Also included in these figures are Nieuwstadt’s (1984) atmospheric measurements, 
gathered from a 200 m tower in the Netherlands. This is a rather rigorous test of the 
local scaling concept given the mild stratification and low Reynolds number of the 
DNS. Nevertheless, the agreement between the Richardson numbers and r.m.s. 
velocity fluctuation profiles of the two data sets, shown in figures 17 (a )  and 17 ( b ) ,  is 
surprisingly good. Only data from the regions in which the flow is strongly turbulent 
(i.e. where the turbulent Reynolds number is large, see figure 9 b )  are used, to avoid 
low-Reynolds-number effects. The maximum z / A  considered, 1.25, corresponds to 
z/h = 0.6. Because RiG, is not constant, the flow in this range is not ‘z-less’; that is, 
it is influenced by the surface. If the stratification were increased (provided the 
turbulence did not collapse), z / A  would increase at  a given elevation, and the effect 
of the surface would diminish. The local scaling theory predicts that the Richardson 
number would then become independent of height. (When the large-eddy scale does 
not depend on z, the modelled turbulent kinetic energy equation requires that the 
Richardson number be constant with elevation (Nieuwstadt 1985).) The strongly 
stable atmosphere often exhibits this feature, with RiGR x 0.2 over considerable 
heights (Mahrt et al. 1979; Nieuwstadt 1984, 1985). Constant values of&,, near 0.1 
have also been found (Garratt 1982). 

The agreement between the locally scaled atmospheric and DNS temperature 
fluctuations and eddy diffusivities, figures 17(c) and 17(d), is poorer. The DNS 
temperature fluctuations do, however, fall fairly close to the atmospheric data that 
were filtered to remove low-frequency oscillations thought to be associated with 
gravity waves (the solid symbols), and the model profile for vT predicted by 

tFor (a), ( b )  and ( d )  the filtered data are either not available or not appreciably different from 
the unfiltered values; see Nieuwstadt (1984). 
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Nieuwstadt’s normalized transport equations lies about as close to the DNS curves 
as it does to the lower values (cf. figure 4 of Nieuwstadt 1984). Despite the 
discrepancies in the cro and vT results, the agreement of the Richardson number and 
r.m.s. velocity fluctuations, especially in the light of the low Reynolds number and 
mild stratification of the simulation, tends to support the validity of the local scaling. 

The DNS results can also be used to provide more direct tests of closure schemes, 
as we will now demonstrate. Two approaches are commonly used to parameterize the 
lengthscale that sets the dissipation rate in stratified flows. The first is due to Brost 
& Wyngaard (1978). It approximates the dissipation length 

in stratified wall-bounded flows by 

with A ,  = 1.69 and C, = 0.139. As noted previously, this is based on the hypothesis 
that the largest vertical scale of the turbulent motions in stratified flows is 
determined by the smaller of the distance from the surface and the buoyancy scale, 

Alternatively, Hunt, Stretch & Britter (1988) (see also Hunt, Spalart & Mansour 
L,  = a,/N. 

1987) proposed as a model of another ‘critical eddy scale’, 

1, = C T k / E ,  (12) 

the expression 

where 2 s  is the magnitude of the mean shear, ((d(u)/dz)2+(d(v)/dz)2)i. As in the 
Brost-Wyngaard model, a harmonic mean is employed to emphasize the smaller of 
the inner (‘ blocking ’) and outer (‘ shear ’) scales. The reason for neglecting the direct 
influence of stratification and recommending (13) is the assumption that the 
dissipation rate is set by the mean strain rate, not the stratification. This is consistent 
with the fact that the shearing scale, c,/2S, is typically smaller than the buoyancy 
scale in stratified turbulence (Hunt et al. 1985, 1988). The ‘blocking’ model constant 
A ,  has been chosen to  be 0.27 by examining shear-free boundary layers and the 
‘shearing’ constant A ,  is found to  be 0.45 by matching the logarithmic boundary- 
layer region. 

The two models are compared in figure 18(a). Both the Brost (dashed curve) and 
Hunt (dotted) models are normalized by the actual lengthscales, C,q3/e  and a;/€, 
respectively. Perfect agreement between data and parameterization would result in 
a constant value of one. Also shown are the model predictions with the 2-l terms left 
out, to illustrate the importance of the blocking contributions. The difference 
between the ‘blocked’ and ‘unblocked’ predictions is much smaller for the Hunt 
model than for Brost’s, to which the z-l term contributes significantly throughout 
the layer. Away from the surface ( z / h  > 0.25), l,,, is too large by as much as 70%, 
whereas L,, is also too large, but by no more than about 30 %. The over-prediction 
of the models may be partially attributed to  the low Reynolds number of the 
simulation. (Note that any variation associated with the uncertainty in E in the outer 
layer due to the time-discretization error discussed in $3  would cause an 
underprediction of the model-to-DNS ratios, and would be of much smaller 
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Reynolds number correction. (b)  -, a J N ;  ---, q 3 / e ;  . . . ,  U , ~ / ~ S ;  -.-, u i / c ;  - - - - ,  7 = (v3 /e)z .  

magnitude than the deviation from one found in figure 18a.) When the Re correction 
of Perry, Lim & Henbest (1985), Perry, Henbest & Lim (1986) is utilized (i.e. crk is 
replaced by & + C;(ve)i and q2 by q2 + 3C;( va);, with C; taken to be 2.8, after Spalart 
1988), both elHSB/gL and ELBw/Ceq3 become less than one. The adjusted predictions 
are given by the solid curves in figure 18 ( a ) .  The original and modified versions of the 
Brost model are of comparable accuracy, but the Re correction significantly improves 
the Hunt parameterization. Both adjusted schemes are most accurate in the 
0.2h < z < 0.6h region, where the flow is most strongly turbulent (figure 9b). 

Using a value of C; less than 2.8 improves both models. With C; = 1.7 ,  the 
adjusted eLBw/Ceq3 and especially elHsB/crk (because of the dominant role of z-l, the 
Brost model is less sensitive to the Perry Re correction) become very close to  1 .O. The 
value of C; has yet to  be agreed upon. Spalart's (1988) value of 2.8 is lower than the 
3.8 originally proposed by Perry et al. (1985). A further reduction may be required. 

Mason & Derbyshire (1990) also found the Brost and Hunt schemes to be of 
comparable accuracy. It appears as if the concepts behind both dissipation closures 
are sound. As shown by the lengthscale profiles in figure 1 8 ( b ) ,  q3 /e  is roughly 
proportional to u J N ,  and to uw/2S. There are two aspects of the Brost model, 
however, that  justify a slight preference for the Hunt model. The first (also pointed 
out by Mason & Derbyshire 1990) is that  blocking is significant far from the surface, 
where the effects of stratification should be dominant (compare figures 18a and 8a) .  
This seems to  be inconsistent with the local scaling concept upon which the model is 
based. The second concern has to do with the use of q3, instead of crk, t o  represent 
the dissipation. Horizontal velocity fluctuations (and therefore q)  in boundary layers 
often contain contributions from 'inactive motions' that are unrelated to e 
(Bradshaw 1967). I n  contrast, gw tends to  be a universal function of u* (Townsend 
1976). Therefore all1 should be a better measure of the dissipation, and is 
recommended over q3 / l .  But since the Brost parameterization models e using, not the 
actual value, but a model for q, which may be unaffected by the inactive motions, 
and since the DNS results provide no basis for preferring one model over the other, 
these objections are perhaps not important from the user's point of view. 

The DNS data were also used to check the performance of gradient closures for the 
temperature fluctuations and turbulent heat flux. The former (Nieuwstadt 1984 ; 
Hunt et al. 1985) is 
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FIGURE 19. Closure parameters for (a) temperature variance (equation (14)) and ( b )  heat flux 
(equation (15)) given by Case SA (time averaged) : -, DNS ; , Mason t Derbyshire's (1990) LES 
results; - - - -, equations (16) and (17) ; . . . , Brost & Wyngaard's (1978) second-order model. 

Rim Rim 

and the latter, - 

where is a constant of order 1 ,  and Fo a thermal diffusivity parameter much 
smaller than one (Hunt et al. 1985). 

The buoyancy scale crJN figures prominently in both (14) and (15). In  fact, the 
temperature variance parameter can be interpreted as the ratio of the thermal 
lengthscale, g+/(d(@)/dz), and a,/N. The ratio is plotted in figure 19(a) versus the 
gradient Richardson number to allow comparison with results from Mason & 
Derbyshire's (1990) LES study (symbols) and Brost & Wyngaard's (1978) second- 
order model (dotted curve) applied ' diagnostically ' (see CFSb). In  accordance with 
local scaling, data from all three sources (DNS, LES, and second-order model) 
collapse fairly well when plotted against RiGR. (By assuming all quantities - 
including RiGR - monotonically depend only on % / A ,  local scaling implies that they 
are unique functions of R&). Based on atmospheric measurements Nieuwstadt 
(1984) and Hunt et al. (1985) found &, to be about 0.96 (at Ri,, x 0.2) and 0.8, 
respectively. Both values are only slightly larger than the DNS results near 
Ri,, = 0.2, the Richardson number typical of atmospheric conditions (Mahrt et al. 
1979; Nieuwstadt 1984, 1985). 

Assuming that the turbulent thermal diffusivity is proportional to the product of 
a single length and velocity scale, and further assuming the scales are a,/N and crw, 
respectively, leads to the expression (15). The thermal diffusivity parameter, so, 
associated with this closure has been measured by Nieuwstadt (1984) as 0.25, and by 
Hunt et al. (1985) as 0.17. The behaviour of go found in the DNS and Mason & 
Derbyshire's LES data, and the (diagnostic) prediction of Brost & Wyngaard's 
model (see CFSb) are shown in figure 19(b). The Case SA, LES and second- 
order model results are comparable to Nieuwstadt's and Hunt et aE.'s values. For 
RiGR < 0.15, all the data point to a unique dependence on gradient Richardson 
number. Above RiG, = 0.15, the DNS and LES results decrease slightly with increas- 
ing Ri,,, while Brost & Wyngaard's go does not. 

and go on Ri,, between the DNS and LES 
results (that have quite different Richardson number profiles), besides validating 
local scaling, implies that the temperature variance and heat flux can be accurately 
represented by the simple closures of (14) and (15). The correspondence between the 
(low-Re) DNS and (high-Re) LES results also shows that the behaviour of the heat 
flux and temperature fluctuations is relatively insensitive to Reynolds number. 

A curve fit of the DNS data for the equation (14) and (15) parameters, which 

The agreement of the dependence of 
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incorporates the expected Rib, behaviour as Ri,, + 0 (inferred by considering the 
g/T, --+ 0 limit), produces the following expressions : 

b = 3.00Ri&,-2.70RiG,, 

%@ = 1.17RibR-1.47Ri,,. (17) 

These interpolants, shown as dashed curves in figure 19, should be used only for 
0 < Ri,, < 0.3. 

6. Results: Cases SB, SC and SD (a ,  < 5 0 )  
To this point, the only stable flow discussed was produced by superimposing a 

temperature profile with relatively large a,/D on a neutral field. The parameter a,/D 
determines the ‘elbow’ or elevation at  which r=  O . O l r o ,  marking the transition 
from neutral to stable stratification. In Case SA, it is in the irrotational region of the 
initial flow. To be precise, in Case SA a, = 0.42xmax = 1.3 (h&, where (h& is the 
5% shear height of the initial neutral layer. As we have seen, the turbulence quickly 
adjusts to the imposed stratification, producing a flow representative of the weakly 
stratified late-night boundary layer. 

Three simulations have been performed, with a,/D < 5 ,  typical of earlier evening 
nocturnal layers. In all cases, a, lies within the vortical portion of the initial flow, 
with either a,/D = 5 (Case SB) or a,/D = 0.75 (SC and SD); see table 1.  The former 
and latter correspond, respectively, to a,/zmax = 0.21 and 0.03, a,/(h& = 0.7 and 
0.1, and (in viscous units) a t  = 130 and 20. The early portions of Cases SC and SD 
(a,/D = 0.75) are similar to Mason & Derbyshire’s (1990) LES runs, which were 
initialized by reducing the surface temperature (equivalent to choosing a, = 0). Our 
principal goal in this section is to address the question of how the various initial 
temperature profiles affect the developed flow state. The answer is found by 
comparing the mean temperature evolution in figures 3(a) ,  20(a), 21(a) and 22(a),  
and the variation of Ri,, in figures 8 ( a ) ,  20(b), 21(b) and 22(b). The early-time 
portions of the three low-a, runs (when the upper regions are unstratified) are similar 
to the flows studied by Mason & Derbyshire, who considered times < 0.7/f. As the 
layer changes from early evening to late night conditions, the effect of buoyancy 
propagates upward in Cases SB and SD, until the turbulence in the uppermost 
elevations is diminished (where Ri,, $ 0.25; figures 20b and 22b).  The transition 
from the early state, where dRi,,/dz x 0 in the outer layer, to the final configuration, 
with RiGR+ 00 as z+ 00, is relatively quick, due to the low Reynolds number of the 
flow. Comparing Cases SB, SC and SD, we see that the weaker the stratification (in 
terms of the total temperature difference across the layer, which is a function of both 
Rio,o and a,) the higher it must propagate to be felt, and the thicker the remaining 
turbulent layer, as shown by the respective heights at  which Ri,, becomes large 
(note that the vertical axis scale in figure 8a differs from that in figures 20b, 21 b and 
22 b) .  For Case SC, the surface-to-free-stream temperature difference is so small that 
even in the outer layer the buoyancy has only a minor effect upon the turbulence, 
and Ri,, remains less than 0.25. The final stages of the other two low-a, runs have 
Richardson number profiles qualitatively similar to that of Case SA (cf. figure 8a) .  
Coupled with the earlier observation that the turbulence quickly equilibrates with 
the local conditions, this is further evidence that the temperature initialization has 
not adversely affected the results presented in the previous section. 
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7. Discussion and conclusions 
7.1 Flow structure 

Stable stratification has a significant effect on turbulence. It is well known that the 
largest vertical scales are most strongly influenced by buoyancy (Wyngaard 1982, p. 
74). For the Ekman layer this means (for cases in which the stratification is not so 
strong as to completely extinguish the turbulence) that the greatest difference 
between the neutral and stratified flows occurs in the outer region, where the scales 
are largest and the shear weakest. Thus, the outer-layer fluxes are diminished (figure 
8c), and the thickness of the turbulent layer is reduced, but the properties of the 
near-surface eddies remain about the same (see figure 6). Consequently, the major 
difference between the stratified and unstratified surface stresses is not in magnitude 
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but in direction; the surface shear angle ,8 is larger in the stratified layer, because 
there is more turning of the mean velocity in the outer region. Near the surface, the 
effects are more subtle. Buoyancy reduces both the turbulent kinetic energy (figure 
5 a )  and the Reynolds shear stress (figure 4),  the latter more than the former (figure 
12). By reducing the thickness of the turbulent layer, the stratification also increases 
the shear in most of the layer (figure 15) (very near the surface the slightly weaker 
Reynolds stresses lead to a smaller surface velocity gradient ; see figure 2c and table 
3.) Thus the eddy viscosity is greatly diminished by stratification (figure 14). All of 
these changes are greater than is implied by a direct measure of the relative strength 
of the buoyancy. For example, the stratification is never directly responsible for 
more than 20 YO of the rate of destruction of the turbulent kinetic energy in Case SA 
(figure 8a, b ) .  This extra destruction is not enough to explain the magnitude of the 
observed change of the rate of growth of &f. The direct reduction in the growth rate 
of the integrated turbulent kinetic energy E caused by the buoyancy is 

Assuming a linear distribution for (w‘T’) (see figure l l a ) ,  this reduction can be 
estimated as 

d(E/DG2)/d(tf) x -+(Ri,/RePr)(Gh/ f D 2 ) .  

For the buoyancy to directly produce the 40 % reduction in E found for Case SA (for 
which Gh/ fD2 = 1400) would therefore require a time of t f w  8.5, instead of the 
tf w 0.5 observed in figure 2 b.  Physically, the stratification reduces the intensity and 
scale of the vertical motions and thereby the vertical transport of momentum 
(Reynolds shear stress) that in turn diminishes the rate of production of turbulent 
energy (cf. figure 15b). (There is also a reduction in the rate of viscous dissipation 
(implied by the vorticity evolution in figure 5 b )  but it is not as great as the 
production rate decrease.) Since the indirect effect of the buoyancy is much stronger 
than the direct effect, stable stratification may be considered as a type of ‘extra- 
strain’, similar to, for example, rotation (Bradshaw 1973; CFSa). 

The stratification also influences the horizontal scales ; there is a correlation 
between the Richardson number and whether the buoyancy causes an increase or 
decrease of the streamwise integral scale (see $85.2, 5.3.2). 

For the cases in which the stratification eliminates all the turbulence (presented in 
CFS b) ,  evidence of gravity-induced reconversion of potential to kinetic energy was 
found. This process is marked by the presence of a counter-gradient heat flux 
(Schumann 1987; see Gerz et al. 1989 and Holt et al. 1992 for alternative physical 
explanations of the counter-gradient flux). The collapsed turbulent state is the only 
one that contained significant wave-like motions. When the turbulence is three- 
dimensional (Cases SA, SB, SC and SD), the lack of complicated topography and 
stratification aloft (and possibly low Reynolds number) here precludes the existence 
of buoyant oscillations in the outer region. Near the surface, where r is large and 
waves could presumably be superimposed upon the turbulence, little difference was 
found between the stable and neutral layers (see CFSb). 

7.2. Reynolds-averaged closures 
Both the ‘constant Froude number’ (Brost & Wyngaard 1978, and equation (11))  
and ‘shearing lengthscale’ (Hunt et al. 1988, and equation (13)) approaches to 
parameterizing the dissipation were generally successful when corrected for the low 
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Reynolds number of the simulation (figure 18a). For the flow considered here, both 
the buoyancy and shearing lengthscales adequately capture the behaviour of the 
dissipation. 

Simple gradient closures for the temperature variance (14) and heat flux (15) were 
also found to be valid, in that the variation of the parameters for each (Q and Fo) 
depends simply on the gradient Richardson number, confirming the finding of Mason 
& Derbyshire (1990). The similarity of DNS and LES results implies that the heat 
flux and temperature fluctuations are relatively insensitive to Reynolds number. 

Our computations also provide support for the concept of local scaling, which 
indirectly supports the assumptions (e.g. that the third-order moments (cf. figure 8c)  
and time-rate-of-change of the second-order moments are negligible) used in the full 
Brost-Wyngaard second-order model. Given the low Reynolds number and mild 
stratification, the correspondence of the simulation results with atmospheric data is 
quite striking (see figure 17a, b ) .  Although the agreement of the profiles for 
temperature variance and eddy viscosity is less satisfactory (figure 17c, d )  part of the 
disparity may be due to uncertainty in the field data. The fact that the discrepancy 
in the temperature variance is much less when the effect of internal waves upon the 
atmospheric data is accounted for, and the similar variation of the temperature 
variance closure parameter with Ri,, in both the DNS and Mason & Derbyshire’s 
LES results provides some support for this possibility. 

The general agreement between the results of this study and Mason & Derbyshire’s 
implies that the stable Ekman layer can be accurately computed using LES. It also 
demonstrates that information generated by DNS can, in some instances, be applied 
to high-Reynolds-number atmospheric flows. 
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